Pesquisar no blog

domingo, 22 de maio de 2011

ENERGIA HIDRELÉTRICA OU HIDRÁULICA

É a energia proveniente do movimento das águas. Ela é produzida por meio do aproveitamento do potencial hidráulico existente num rio, utilizando desníveis naturais, como quedas de água, ou artificiais, produzidos pelo desvio do curso original do rio.....



O uso da força das águas para gerar energia é bastante antigo e começou com a utilização das chamadas "noras", ou rodas d'água do tipo horizontal, que através da ação direta de uma queda d'água produz energia mecânica e são usadas desde o século I a.C.. A partir do século XVIII, com o surgimento de tecnologias como o motor, o dínamo, a lâmpada e a turbina hidráulica, foi possível converter a energia mecânica em eletricidade.
Mas o acionamento do primeiro sistema de conversão de hidroenergia em energia elétrica do mundo ocorreria somente em 1897 quando entrou em funcionamento a hidrelétrica de "Niágara Falls" (EUA) idealizada por Nikola Tesla com o apoio da Westinghouse. De lá para cá o modelo é praticamente o mesmo, com mudanças apenas nas tecnologias que permitem maior eficiência e confiabilidade do sistema. Cerca de 20% da energia elétrica gerada no mundo todo é proveniente de hidrelétricas. Em números aproximados, só no Brasil, a energia hidrelétrica é responsável por 75 milhões de KW. São 158 usinas em funcionamento, outras 9 usinas estão em construção e existem 26 outorgadas (com permissão para serem construídas).
No Brasil, devido a sua enorme quantidade de rios caudalosos, e correndo sobre planaltos e de depressões, a maior parte da energia elétrica disponível é proveniente de grandes usinas hidrelétricas. A energia primária de uma hidrelétrica é a energia potencial gravitacional da água contida numa represa elevada. Antes de se tornar energia elétrica, a energia primária deve ser convertida em energia cinética de rotação. O dispositivo que realiza essa transformação é a turbina. Ela consiste basicamente em uma roda dotada de pás, que é posta em rápida rotação ao receber a massa de água. O último elemento dessa cadeia de transformações é o gerador, que converte o movimento rotatório da turbina em energia elétrica.
Uma usina hidrelétrica, no Brasil, pode ser classificada de acordo com a sua potência de geração de energia em dois tipos principais: as PCH's, ou pequenas centrais hidrelétricas que produzem de 1MW a 30 MW e possui um reservatório com área inferior a 3 km² (Resolução ANEEL N.º 394/98), e as GCH's, ou grandes centrais hidroelétricas que produzem acima de 30 MW.
A maior hidrelétrica do mundo ainda é a usina de Itaipu pertencente ao Brasil e ao Paraguai. Situada no rio Paraná Itaipu tem uma capacidade de 13.300 MW, respondendo por 20% da demanda nacional e 95% da demanda paraguaia de energia elétrica. Mas em 2009 Itaipu perderá seu título de maior do mundo para a Hidrelétrica de Três Gargantas que está sendo construída no rio Yang-Tsé, na China. Três Gargantas terá uma capacidade de produzir 85 bilhões de KWh.
Claro que os impactos ambientais destes dois grandes empreendimentos são tão colossais quanto eles próprios: Três Gargantas irá engolir 13 cidades, 4500 aldeias e 162 sítios arqueológicos importantíssimos para a China. Sem contar os impactos sobre a flora, fauna, solo, alterações do microclima da região, ciclo hidrológico e as milhares de pessoas que tiveram de ser realocadas.
De fato as usinas hidrelétricas são uma fonte renovável de energia, mas isso não significa que sejam ambientalmente corretas e nem que são menos nocivas que outras fontes unanimemente nocivas. Uma tentativa de minimizar os impactos das hidrelétricas é a substituição dos grandes empreendimentos por PCH's, porém esse é ainda um tema bastante controverso já que mesmo que em menor escala, as PCH's também causam impactos. Um rio não é percorrido pela mesma quantidade de água durante o ano inteiro. Em uma estação chuvosa, é claro, a quantidade de água aumenta. Para aproveitar ao máximo as possibilidades de fornecimento de energia de um rio, deve-se regularizar-se a sua vazão, a fim de que a usina possa funcionar continuamente com toda a potência instalada. A vazão de água é regularizada pela construção de lagos artificiais. Uma represa, construída de material muito resistente - pedra, terra, frequentemente cimento armado - , fecha o vale pelo qual corre o rio. As águas param e formam o lago artificial. Dele pode-se tirar água quando o rio está baixo ou mesmo seco, obtendo-se assim uma vazão constante. A construção de represas quase sempre constitui uma grande empreitada da engenharia civil. Os paredões, de tamanho gigante, devem resistir às extraordinárias forças exercidas pelas águas que ela deve conter. Às vezes, têm que suportar ainda a pressão das paredes rochosas da montanha em que se apoiam. 
Para diminuir o efeito das dilatações e contrações devidas às mudanças de temperatura, a construção é feita em diversos blocos, separados por juntas de dilatação. Quando a represa está concluída, em sua massa são colocados termômetros capazes de transmitir a medida da temperatura a distância; eles registram as diferenças de temperatura que se possam verificar entre um ponto e outro do paredão e indicam se há perigo de ocorrerem tensões que provoquem fendas.
O custo de investimento é bastante caro, por causa das obras de grande porte, principalmente para abastecer a Região Sudeste, por ser a mais industrializada é a que consome mais energia. As usinas hidrelétricas fornecem aproximadamente 90% de energia elétrica em todo o território brasileiro e 10% são utilizadas pelas usinas termelétricas ou nucleares. O Brasil ainda tem grandes chances de construir mais usinas, seu potencial hidráulico é reconhecido como o terceiro maior do mundo, ficando atrás apenas da Rússia e da China.

A POTÊNCIA
A energia que pode ser fornecida por unidade de tempo chama-se potência, e é medida em watt (W). Como as potências fornecidas pelas usinas hidrelétricas são muito grandes, sempre expressas em milhares de watts, utiliza-se para sua medida um múltiplo dessa unidade, o quilowatt (kW), que equivale a 1.000 W. A potência de uma fonte de energia elétrica pode ser calculada multiplicando-se a tensão em volts que ela é capaz de fornecer pela corrente em ampères que distribui. Dessa maneira, uma fonte capaz de distribuir 1.000 A com uma tensão de 10.000 V possui uma potência de 10 milhões de watts, ou 10.000 kW. Uma linha de transmissão, portanto, é capaz de transportar a mesma potência de duas maneiras: com voltagem elevada e corrente de baixa intensidade, ou com voltagem baixa e alta corrente. Quando a energia elétrica atravessa um condutor, transforma-se parcialmente em calor. Essa perda é tanto maior quanto mais elevada for a intensidade da corrente transportada e maior for a resistência do fio condutor. Assim, seria conveniente efetuar a transmissão da energia elétrica por meio de fios muito grossos, que apresentam menos resistência. Porém, não se pode aumentar excessivamente o diâmetro do condutor, pois isso traria graves problemas de construção e transporte, além de encarecer muito a instalação. Assim, prefere-se usar altos valores de tensão, que vão de 150.000 até 400.000 V. A energia elétrica produzida nas centrais não é dotada de tensão tão alta. Nos geradores, originalmente, essa energia tem uma tensão de cerca de 10.000 V. Valores mais altos são inadequadas, porque os geradores deveriam ser construídos com dimensões enormes. Além disso, os geradores possuem partes em movimento e não é possível aumentar arbitrariamente suas dimensões. A energia elétrica é, pois, produzida a uma tensão relativamente baixa, que em seguida é elevada, para fins de transporte. Ao chegar às vizinhanças dos locais de utilização, a tensão é rebaixada. Essas elevações e abaixamentos são feitos por meio de transformadores.

O GERADOR

O gerador é um dispositivo que funciona com base nas leis da indução eletromagnética. Em sua forma mais simples, consiste numa espira em forma de retângulo. Ela fica imersa num campo magnético e gira em torno de um eixo perpendicular às linhas desse campo.
Quando fazemos a espira girar com movimento regular, o fluxo magnético que atravessa sua superfície varia continuamente. Surge assim, na espira, uma corrente induzida periódica. A cada meia volta da espira o sentido da corrente se inverte, por isso ela recebe o nome de corrente alternada.
Veja na tabela abaixo a repartição do potencial hidrelétrico, das mais importantes bacias hidrográficas do Brasil.

Potencial hidrelétrico por bacia hidrográfica
Potencial (MW)
Bacia do Amazonas
106 051
Bacia do Tocantins
26 847
Bacia do Paraná
61 400
Bacia do São Francisco
26 622
Bacia do Uruguai
15 123
Atlântico Sudeste
14 528
Atlântico Sul
9 599
Atlântico Leste
3 115
Total do Brasil
263 285
A energia hidráulica suporta todas as necessidades brasileiras em relação à eletricidade, porém, para que isso ocorra de forma correta, deve haver novas construções de usinas.


ASPECTOS AMBIENTAIS
A construção de uma usina hidroelétrica envolve muitos aspectos principalmente os da natureza, ela deve ser construída no encontro de vários rios e o relevo influencia bastante, há necessidade de desníveis para a água adquirir mais velocidade. É construída então uma barragem para que a água seja represada, esta deve ter uma grande altura para a água adquirir mais velocidade durante a queda, girando as turbinas que por sua vez produzirá eletricidade. Podendo causar alterações do microclima da região, ciclo hidrológico. A degradação ambiental e o espaço que emprega o lago artificial colocado pela construção da usina. Causando também a perda de solos agricultáveis, florestas, fauna, flora e as milhares de pessoas que tem de ser realocadas.

PARA SABER MAIS CLIQUE AQUI

Fonte: 
http://www.portalsaofrancisco.com.br
www.itaipu.gov.br
www.institutoedp.com.br

Um comentário:

  1. Gostei muito de seu post é bem detalhado
    se você quiser dar uma olhada nesse site

    ResponderExcluir

CAROS LEITORES, SEJAM BEM VINDOS!

Related Posts Plugin for WordPress, Blogger...